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Abstract. A simple recipe for revealing classical-like properties of optical-potential cross-sections is pro-
posed. The recipe is based on the fact that the classical properties are not expected to depend on the
actual value of �. This allows us to identify the classical-like characteristics of an optical-potential cross-
section by simply repeating the calculation with different values of �, and observing which properties of the
cross-section are invariant. The method is applied to the cross-sections of a few optical potentials used to
describe the recent data of light heavy-ion elastic scattering. An improved near-side/far-side decomposition
is used to separate the near-side and far-side components of the optical-potential cross-sections.

PACS. 24.10.Ht Optical and diffraction models – 25.70.Bc Elastic and quasielastic scattering – 03.65.Sq
Semiclassical theories and applications

1 Introduction

Deep real parts and shallow imaginary ones characterise
the optical potentials used to reproduce the recent detailed
measurement of the elastic cross-sections of light heavy-
ions [1–6]. The cross-sections σ(θ) of these optical poten-
tials show complicated interference patterns making the
understanding of the physical phenomena involved in the
scattering process difficult. The number of partial waves
that contribute to σ(θ) is usually rather large. This allows
one to hope that semiclassical methods [7] can be applied
for explaining the complicate patterns of the cross-sections
in terms of interference between simpler subamplitudes re-
vealing, if possible, simple semiclassical properties of the
cross-sections.

The asymptotic limit for � → 0, that will be named
the classical-like limit, of quantum scattering by a real
potential has been well understood for more than fourty
years [8]. Usually, this limit is found with the use of asymp-
totic approximations for the scattering function S(λ) (λ =
l + 1

2 , where l is the angular-momentum quantum num-
ber), for the Legendre polynomials Pl(cos θ), and for the
partial-wave expansion of the scattering amplitude f(θ).
As a result one obtains that the classical-like limit fc(θ) of
f(θ) can be expressed in terms of one, or more, stationary-
phase contributions. The square modulus of the contribu-
tion of a stationary-phase point, at λi(θ), exactly coincides
with the contribution to the classical cross-section at θ
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from the trajectories with angular momentum λi (in units
of �). Because each stationary-point contribution has also
a phase, if more stationary points contribute to fc(θ) in
some angular range, oscillations appear in the classical-
like limit σc(θ) = |fc(θ)|2 of σ(θ).

A direct comparison of the exact σ(θ) with its asymp-
totic expression σc(θ) can provide indications on the pos-
sibility of describing the scattering process in terms of
classical-like trajectories: trajectories that, as the rays of
the geometrical optics, are fixed by a minimum-action
principle but have associated phases accounting for the
quantum interference phenomenon.

In the scattering process from the optical potentials
currently used (also neglecting the complications arising
from the presence in the interaction of an imaginary part)
the classical integral actions, in units of �, are large but,
obviously, not infinite. Owing to this, quantum contribu-
tions, eventually superimposed to classical-like ones, are
usually present in S(λ) and in the corresponding f(θ) and
σ(θ). Only in the extreme classical-like limit these quan-
tum contributions are expected to disappear, remaining
confined to regions of widths going to zero.

Several methods [7] were developed to extend the semi-
classical description to cases in which an imaginary part
is present in the potential and the extreme classical-like
limit is not well approached. These methods, accounting
also for diffraction and reflection above the top of a bar-
rier, considerably extend the possibility of describing semi-
classically a scattering process. However, presently, they
predict cross-sections in quantitative agreement with the
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exact ones only in certain energy ranges, depending on the
optical potential considered.

Furthermore, also admitting that we are within the
range of validity of some of the available semiclassical
methods, their application to practical cases is more diffi-
cult than the direct calculation of the exact cross-section.
Owing to this, one could ask if some trick exists, which is
able to provide quickly some information on the classical-
like nature of some properties of σ(θ) using only a stan-
dard optical code; without worrying about the complica-
tions of the semiclassical techniques, about their ranges
of validity, and even without calculating any classical-like
quantity.

In this paper one of these possible tricks is investi-
gated. The basic idea is that the classical properties do
not depend on �. Owing to this, all the properties of a
cross-section which do not depend on the value which is
attributed to �, in the framework of a quantum calcula-
tion, can be considered of classical origin.

The main ingredients of this simple recipe, which can
be easlily implemented in any standard optical-potential
code, are presented in sect. 2. In order to test the method
in a simple case, in sect. 3 we present the results obtained
for a real optical potential. In sects. 4 and 5 the method
is applied to analyze the behavior of two optical-potential
cross-sections, fitted to the experimental data of 16O +12C
at the laboratory energies of 132 and 200 MeV [4].

For the cases considered, the results of the quantum
calculation, with the true value of �, are first compared
with the results of classical calculations. This comparison
is not really necessary for the application of the recipe,
and is introduced here only to show the reliability of the
method to identify correctly classical-like properties.

By varying � the qualitative behavior of the quan-
tum σ(θ) smoothly changes. Considering the oscillations
of σ(θ) as arising from the interference between simpler
subamplitudes, one observes that, with decreasing �, the
modulus of some of these subamplitudes continues to mod-
ify its behavior (contributing to angular ranges of decreas-
ing width) while that of others becomes insensitive to any
further decrease of �. The former subamplitudes reveal
their quantum origin, the latter their classical-like one.

The comparison of the real σ(θ) (calculated with the
true value of �) with the fictitious cross-sections (calcu-
lated attributing to � values sufficiently small) allows one
to obtain easy indications on its classical-like properties.

2 Main ingredients of the recipe

2.1 Classical-mechanics ingredients

Accordingly to classical mechanics, the cross-section for
scattering from a potential V (r) is completely determined
by the deflection function

Θ(λ) = π − 2
∫ ∞

r0(λ)

λ

kr2

√
1− V (r)

E − λ2

k2r2

dr, (1)

where L = λ� and p = k� are, respectively, the angular
and linear momenta, and r0(λ) is the turning point
which delimits the classical region of the radial motion
from below.

The deflection angle Θ(λ) is the total angle spanned
by the vector of the linear momentum along the trajectory
with impact parameter b = λ/k. From its definition Θ(λ)
has only an upper limit, it must be lower than π. For
attractive potentials the minimum of Θ(λ) can be any
negative values, depending on the potential, and can also
become −∞ at certain λ values, when the orbiting, or
spiral scattering, phenomenon occurs.

At large distances from the scattering center, the
trajectories with a deflection angle between −2nπ and
(−2n + 1)π, with n = 0, 1, . . ., have their initial and fi-
nal parts in the same half of the scattering plane divided
along the line parallel to the initial linear momentum and
passing through the origin. These trajectories are usually
named near-side (N) trajectories. Similarly the trajecto-
ries with a deflection angle between (−2n−1)π and −2nπ,
with n = 0, 1, . . ., have their initial and final parts in op-
posite halves of the scattering plane. These trajectories
are usually named far-side (F) trajectories. In both cases
the index n counts the number of times the trajectories
have encircled the origin.

The angle θ(λ) at which the particles are scattered,
and observed, is by definition contained in the interval 0-π,
and it is obtained from the deflection angle Θ(λ) using the
relation

θ(λ) = arccos[cosΘ(λ)]. (2)

The relation (2) “physically” corresponds to folding the
plane (λ,Θ) first up, along the line Θ = 0, and then down,
along the line Θ = π. The folding must be repeated until
all the parts of Θ(λ) fall in the scattering angle range.

An artist’s view of this folding procedure is given in
fig. 1. The thick line gives Θ(λ) as a function of the im-
pact parameter b. The continuous and dashed parts of this
line indicate the branches of Θ(λ) corresponding to N and
F trajectories, respectively, and the labels designate the
branches of Θ(λ) producing a bijective mapping from b to
θ. The dependence of θ(λ) on b, obtained using the folding
procedure, is given in the upper panel by the thin lines.

The deflection function shown in fig. 1 has the typical
characteristics which are expected for scattering by a nu-
clear strongly attractive potential with a Coulomb repul-
sive tail. The interplay between the attractive and repul-
sive forces produces the appearance of a narrow minimum,
a nuclear rainbow, and a broad maximum, a Coulomb rain-
bow. The positions of the points corresponding to these
rainbows are indicated in the figure with the symbols θn
and θC, respectively.

The i-th branch θi(λ) contributes to the classical cross-
section, at angles between the minimum and the maximum
value of θi(λ), with a term

σi(θ) =
λi(θ)
k2 sin θ

∣∣∣∣dλi(θ)
dθ

∣∣∣∣ , (3)
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Fig. 1. Artist’s view of the folding procedure transforming
deflection angles into scattering angles.

where λi(θ) is the inverse function of θi(λ). The full clas-
sical cross-section is finally given by

σC(θ) =
∑

j

σj(θ), (4)

where the index j runs over the indices of all the branches
of θ(λ) contributing to the scattering angle θ.

As a result, with the exclusion of the few cases in which
the deflection functions are particularly simple, the struc-
ture of σC(θ) is rather complicated. Several and different
branches of Θ(λ) contribute to σC(θ) in different angular
ranges. For example, to the cross-section of the deflection
function shown in fig. 1, the branches 1, 4, 5, and 6 con-
tribute in the range 0 < θ < θC, the branches 1 and 4 in
the range θC < θ < θn, and finally the branches 1, 2, 3
and 4 in the range θC < θ < π. The cross-section goes to
infinity for θ approaching from the left θC and from the
right θn (rainbow singularities). The cross-sections σ4,5

and σ1-4 are divergent at θ = 0 and θ = π, respectively,
because of the presence of the term 1/ sin θ in (3) (glory
singularities).

The resulting complicated behavior of σC(θ) mainly
arises from the folding procedure transforming deflection
angles into scattering angle. A simpler representation can
be obtained unfolding the cross-section, i.e. reassigning
the contributions σi(θ) to the deflection angle range from
which they are originated.

An artist’s view of this unfolding procedure is shown in
fig. 2 for the cross-section corresponding to the deflection
function of fig. 1. In this figure the thin and thick lines
(solid for N, dashed for F, and dotted for the summed
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Fig. 2. Artist’s view of the cross-section unfolding procedure
transforming back the scattering angles into deflection angles.

contributions) show the folded and the unfolded contribu-
tions, respectively. The labels identify the contributions
from the different branches of Θ(λ).

To get rid of the glory singularities we have preferred
to plot σ(θ) sin θ and σ(Θ)| sinΘ| rather than the cross-
sections. The unfolded curves have a continuous behavior
at Θ = −180◦ and the full σ(Θ)| sinΘ| is made up using
only the contributions of three new branches of the deflec-
tion function. The first is made up from the old branches 1
and 2, and corresponds to angular momenta smaller than
the nuclear-rainbow one λn. The second is made up from
the old branches 3, 4, and 5, and corresponds to angu-
lar momenta from λn to the angular momentum λC of
the Coulomb rainbow. The last is the old branch 6, and
corresponds to angular momenta larger than λC.

If one limits oneself to separate, in the original scat-
tering angle range, the N from the F contributions, one
obtains another representation of the cross-section that in
some cases can become as simple as the unfolded represen-
tation. The case shown in fig. 2 is one of these cases. Only
two branches (1 and 4) contribute to the F cross-section in
the whole scattering angle range, and the remaining four
branches, in separated pairs, contribute to the N cross-
section. The branches 5 and 6 contribute only for θ < θC

and the branches 3 and 4 contribute only for θ > θn.

2.2 Quantum-mechanics ingredients

Accordingly to quantum mechanics, the cross-section for
scattering from a potential V (r) is completely determined
by the scattering function S(λ). This quantity defines the
scattering amplitude

f(θ) =
i

k

∞∑
l=0

λ[1 − S(λ)]Pλ− 1
2
(cos θ), (5)
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and the cross-section σ(θ) = |f(θ)|2.
In the limit � → 0 a link appears between S(λ) and the

classical deflection function Θ(λ). These two quantities are
in fact connected by the relation

lim
�→0

d argS(λ)
dλ

= Θ(λ). (6)

Thanks to this link, a classical-like expression for σ(θ)
is obtained substituting the Legendre polynomials with
the first term of their non-uniform asymptotic expansion,
transforming the partial-wave expansion into a sum of in-
tegrals, and evaluating asymptotically these integrals us-
ing the stationary-phase method (ref. [7] p. 49-63).

The properties of the deflection function fix the num-
ber of the stationary-phase points λi(θ) which contribute
to the asymptotic estimate fc(θ) of f(θ) at the angle θ.
Each λi(θ) gives to fc(θ) a contribution

fi(θ) = Ai(θ) exp[iαi(θ)], (7)

where Ai(θ) and αi(θ) are, respectively, the modulus and
the phase of fi(θ).

The dependence of λi(θ) on θ is the same predicted by
classical mechanics for the corresponding branch of the
classical deflection function. Furthermore, the rule fixing
the scattering angular ranges to which λi contributes is
the same which holds in classical mechanics. Owing to
this, in analogy to (4), one obtains

fc(θ) =
∑

j

fj(θ). (8)

Each A2
i (θ) is equal to a corresponding classical σi(θ),

given by (3), and does not depend on �. This classical in-
variance of Ai(θ) can be used to obtain a signature of the
dominance of contributions from the classical-like ampli-
tudes fi(θ) in a quantum cross-section by simply observing
the changes of this quantity produced by varying �.

The analysis is particularly simple if only one branch
of the classical Θ(λ) contributes to the cross-section in a
certain, or in the whole, scattering angle range. In this
case the signature of the dominance of a classical-like con-
tribution is the observation that the quantum σ(θ) does
not change by shrinking �. The phase associated to the
classical-like amplitude is completely unrelevant.

The situation is slightly more complicated in the angu-
lar ranges in which two, or more, branches of the classical
Θ(λ) contribute to the cross-section. Omitting for simplic-
ity the specification of the different quantities from θ, in
these cases two, or more, fi contribute to the asymptotic
estimate fc of f , and the phases αi produce interference
effects in the asymptotic estimate σc = |fc|2 of the cross-
section.

The phases αi are essentially, apart from a common
renormalization term, the integral action (in units of �)
accumulated along the classical trajectories with angu-
lar momentum λi, and the difference between any pair of
phases αi −αj goes to infinity as � goes to zero. Owing to
this, in these situations, even in the limit � → 0 the inter-
ference oscillations do not disappear. The oscillation pe-
riod goes to zero, and σc continues to oscillate between an

upper and a lower value. In this limit the quantum cross-
section becomes equal to σc, and the classical-mechanics
result (4) can be obtained only by averaging σc over the
finite resolution of the experimental device used to count
the scattered particles.

Even in these more complicated situations a clear indi-
cation of the dominance of classical-like contributions can
be obtained by repeating the quantum calculation varying
�. Let us assume, for example, that in a certain angular
range, only the contribution from the branches labelled i
and j of the classical Θ(λ) are expected. In this case σc

has the form

σc = A2
i +A2

j + 2AiAj cos(αi − αj). (9)

The σc values are included between the upper limit (Ai +
Aj)2, corresponding to maximal constructive interference,
and the lower limit (Ai −Aj)2, corresponding to maximal
destructive interference. These upper and lower limits are
the upper and lower envelopes of all the σc curves calcu-
lated by varying �. This is due to the fact that the Ai,j

do not depend on � (they are equal to σ
1/2
i,j , where the

σi,j are the corresponding classical cross-sections), while
αi − αj is inversely proportional to �. In the following,
these envelopes and the delimited region will be named
classical interference limits and classical interference re-
gion, respectively, or more briefly interference limits and
interference region.

The quantum σ(θ), if entirely dominated by two
classical-like contributions, must be expressible in the
form (9), and must have as upper and lower envelopes
the classical interference limits. Should we calculate σ(θ)
using smaller values of � we would only observe the sliding
of σ(θ), with an increasing number of oscillations, in the
classical interference region. On the other hand, the fact
that the σ(θ) satisfies this property can be considered a
signature of the dominance of two classical-like contribu-
tions.

The problem remains of finding the classical interfer-
ence limits. One obvious possibility is represented by cal-
culating the classical cross-sections σi. For an arbitrary
number of branches, contributing to the cross-section at a
given θ, the upper interference limit is given by

σu(θ) =

[∑
i

σ
1/2
i (θ)

]2

. (10)

The lower interference limit can be calculated by finding
at each θ the value M of the index of the largest amongst
the σ

1/2
i (θ). Indicating with δ(θ) the quantity

δ(θ) = σ
1/2
M (θ)−

∑
i�=M

σ
1/2
i (θ), (11)

the lower interference limit is given by

σl(θ) =
{

0 , for δ(θ) ≤ 0 ,
δ2(θ) , for δ(θ) > 0 . (12)
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Equations (10) and (12) become

σu,l(θ) = [σ1/2
i (θ)± σ

1/2
j (θ)]2 (13)

in the angular ranges in which only the two branches i
and j contribute to the cross-section.

Without using any classical calculation the interfer-
ence limits can also be found empirically, using a stan-
dard optical-potential code and calculating the quantum
cross-sections by attributing to � different values, suffi-
ciently smaller than the physical value and constructing,
if observed, the common lower and upper envelopes of
the cross-section curves. In the cases that we have an-
alyzed the tendency of the cross-section curves to have
these common envelopes was clearly observed by attribut-
ing to � values from 3 to 4 times smaller than the true
value. It may be that, in different cases, this tendency
is not observed using reduced � values belonging to this
range. However, even in these cases we can give an answer
(negative) to the question of whether the quantum cross-
section is dominated by classical-like contributions. If also
with the reduced values of � we are far from the region
where σ(θ) � σc(θ), a fortiori, we must be even farther
with the real value of �.

Using this simple method without any prudence there
is, however, the risk to miss the observation of classical-
like contributions in situations in which these are actu-
ally present. The fact is that the classical-like limit of
different scattering mechanisms is reached, by shrinking
�, with different rapidity. When many scattering mecha-
nisms contribute to the quantum scattering phenomenon
it may happens that some of these mechanisms have well
approached this limit, while others, of wave origin (like
reflection and diffraction in the region of rapid variation
of the interaction), continue to contribute significantly to
the interference pattern of the full cross-sections calcu-
lated with reduced values of �.

To limit this possible risk, without being forced to use
very small values of �, it is convenient to try to separate, in
the full quantum amplitude f(θ) the contributions from
the different mechanisms. To this scope we use here an
improved near-side/far-side (NF) decomposition of order
1 [9]. The NF decomposition, proposed in its usual formu-
lation by Fuller [10], tries to separate in the full f(θ) the
contributions from the different scattering mechanisms us-
ing the same NF separation criterion that can be used to
separate the contributions from different trajectories to
the classical cross-section. The N and F cross-sections are
less structured than the full σ(θ). This will allow us to
appreciate, for example, the existence of well-defined up-
per and lower envelopes in the quantum F cross-sections,
calculated with � below a certain value, even when the
quantum contributions to the N amplitude prevent the
full σ(θ) to have upper and lower envelopes defined.

The improved NF decomposition here used strongly
reduces the importance of unphysical contributions ap-
pearing in a preliminary proposal of the shrinking �

method [11] where the conventional Fuller’s NF decom-
position [10] was used.

2.3 Role of the imaginary potential and properties of
S(λ)

The above scheme is well suited to bring out classical-like
contributions in the cross-section for scattering by a real
potential, but it cannot be directly applied to cases in
which an imaginary potential is introduced, to simulate
the effects of the population of channels different from the
elastic one.

The imaginary part W (r) of the potential, if negative,
removes flux from the elastic channel and the time de-
pendence of the probability density, ρ(r, t) = |ψ(r, t)|2,
of finding the scattering partners at time t at a relative
position r satisfies the equation (ref. [7], pp. 7 and 49)

∂ρ(r, t)
∂t

+ divj(r, t) =
2W (r)

�
ρ(r, t), (14)

where j(r, t) is the probability current density. The above
equation suggests the interpretation of the quantity w =
−2W (r)/� as the transition rate out of the elastic channel.

With this interpretation of w the form of the classical
cross-section given by eq. (3) remains the same, apart for
the introduction on the r.h.s of a multiplicative factor

P (λ) = exp


 1

2�

∫ ∞

r0(λ)

W (r)
E√

1 − V (r)
E − λ2

k2r2

dr


 , (15)

expressing the probability that the particles with angu-
lar momentum λ are not removed from the elastic chan-
nel during their motion along the classical trajectory.
This form of the cross-section is just that obtained using
the naive WKB approximation [12] to estimate S(λ), the
stationary-phase method to evaluate f(θ), and neglecting
the interference effects. In this approximation, the prob-
ability that the particles with angular momentum λ are
not removed from the elastic channel can be identified
with |S(λ)|2, which has exactly the dependence (15) from
the imaginary part of the potential.

In accordance with this picture, in the search process
of the classical interference limits by varying � (in order
to keep constant the survival probability factor) the imag-
inary potential must be scaled with the same factor used
for �. This will be the additional caution used to look for
traces of classical-like contributions in the quantum σ(θ).

Apart from in the cross-section, traces of classical-like
contributions can also be found in the behavior of |S(λ)|
and of d argS(λ)/dλ. In the following, this last quantity
will be named quantum deflection function and indicated
with ΘQ(λ).

If the asymptotic classical-like region is well ap-
proached both |S(λ)| and ΘQ(λ) are expected not to de-
pend on the value of �, if plotted versus the impact pa-
rameter b = λ/k.

The conventional optical-potential codes provide the
values of S(λ) at half-integer positive λ values. These val-
ues can be used directly to plot |S(λ)| versus the impact
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parameter b, and using the finite difference formula

ΘQ(λ) =
d argS(λ)

dλ
� argS(λ+∆λ)− argS(λ−∆λ)

2∆λ
,

(16)
with ∆λ = 0.5, they often also provide a reasonable ap-
proximation for ΘQ(λ) at integer λ values. In the cases
here considered the angle α between two successive S(λ)
values, plotted in the complex plane, is taken as the convex
one. Only as an extreme precaution the quantity ΘQ(λ)
was estimated, outside our conventional optical code, us-
ing eq. (16) with a step ∆λ = 0.1 for α > π

4 and of 0.5
elsewhere.

The fact that the values of |S(λ)| and ΘQ(λ), calcu-
lated with different values of � and plotted against b, lie
on the same curve can be considered a sign of the rele-
vance of classical-like contributions in the scattering pro-
cess. However this fact, alone, does not guarantee that
f(θ) is well approximated by fc(θ) given by (8). The real-
ization of this classical-like limit for f(θ) also requires that
the integrals, in which the partial-wave expansion of f(θ)
is transformed, can be approximated by the stationary-
phase method and that, at the stationary-phase points,
the Legendre functions are well approximated by the first
term of their non-uniform asymptotic expansion.

The stationary-phase method fails in a neighborhood
of the classical rainbow angles and the uniform method
(ref. [7], p. 58) allows an estimation of f(θ) in terms of Airy
functions. The uniform approximation substitutes the sin-
gularity of the classical cross-section, followed by the sharp
shadow region, with a maximum in the lit region followed
by a decrease of the cross-section in the shadow region.
The interference oscillations in the lit region have a pe-
riod increasing by approaching the maximum. In the limit
� → 0 the oscillation period goes to zero rather slowly,
while the maximum moves towards the rainbow angle and
the cross-section decreases more and more rapidly in the
shadow region. Therefore, in general, we can expect a pre-
cise identification of the classical interference region only
using very small � values.

Similar drawbacks are also expected in the extreme
backward direction, where the usual non-uniform approx-
imation for the Legendre functions does not hold (ref. [7],
p. 89). This approximation is responsible for the presence
of the factor 1/ sin θ in the asymptotic cross-section and,
consequently, for the classical glory singularity.

These typical quantum effects are, however, standard,
and one can easily account for them, recognizing their
presence in the cross-sections calculated with reduced val-
ues of �.

3 Real optical-potential cross-section

To test the effectiveness of the method based on the vari-
ation of �, we first consider the cross-section of a ficti-
tious real optical potential having a conventional Woods-
Saxon form factor with parameters V0 = 282.2 MeV,
Rv = 2.818 fm and dv = 0.978 fm. This potential is
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Fig. 3. Classical (thick curve) and quantum (open dots) de-
flection functions. The thin curve interpolates the dots.

the real part of one of those used for fitting the elastic-
scattering cross-section of 16O + 12C at Elab = 132
MeV [4]. For all the cases here considered, the Coulomb
part of the interaction is described using an analytical
potential that closely approximates [13] the Coulomb po-
tential of two uniformly charged spheres with radii of 3.54
fm and 3.17 fm. We note, in passing, that the classical de-
flection function and cross-sections shown in the artist’s
views of subsect. 2.1 (figs. 1 and 2) are those of this poten-
tial. In the following, we will refer to the different branches
of the deflection function of this potential using the same
indices used in the figs. 1 and 2.

3.1 Comparison with classical quantities

The thick solid line in fig. 3 shows the classical deflection
function Θ(λ), as a function of the impact parameter b.
This line, as similar ones for the other cases considered,
shows the cubic spline interpolation of the Θ(λ) values
calculated using eq. (1). The open dots in fig. 3 show the
values of ΘQ(λ) estimated by using eq. (16) at integer λ
values. The thin curve gives the cubic spline interpolation
of the calculated points. The agreement between the dots
and the thick curve is impressive and the small differences
between the thin and the thick lines may be a consequence
of the spline used to interpolate the dots.

The classical deflection function shows a maximum of
about 7◦ at bC � 9.3 (λC � 40.2) and a minimum of
about −310◦ at bn � 5.4 (λn � 23.5). The correspond-
ing Coulomb and nuclear rainbows are located at θC � 7◦
and θn � 50◦, respectively. At b �= 0, the deflection func-
tion Θ(λ) crosses three times values for which sin θ = 0.
Two glory singularities are expected at θ = 180◦ and one,
additional to the Coulomb singularity, at θ = 0◦.

In panel (a) of fig. 4 the thick curve shows the ra-
tio of the full classical-mechanics cross-section σC(θ) (4)
to the Rutherford one σR(θ). The thin solid and dashed
curves show the contributions σi(θ) (3) from the differ-
ent branches, N and F respectively, of Θ(λ). The labels
identify the contributions for i = 1, 2, 3, and 4. The ap-
pearance of the rainbow singularities is clear, as that of the
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Fig. 4. (a) Classical cross-section (thick line), N (thin solid
lines) and F (thin dashed lines) contributions to the classical
cross-section; (b) quantum (thick solid line) and classical (thick
dashed line) cross-sections , the thin lines show the interference
limits; (c) and (d) the same as in panel (b) for the N and F
cross-sections, respectively.

backward glory singularities. The forward glory is masked
by the σR(θ) higher-order singularity.

In panel (b) the thin solid lines show the classical inter-
ference limits of the contributions from all the branches
of Θ(λ). In the same panel the thick dashed and solid
lines show, respectively, the full classical and the quantum
cross-sections. The interference limits were calculated us-
ing (13) in the region θC < θ < θn, where only the two
F branches 1 and 4 of Θ(λ) contribute. Four branches
contribute for θ < θC (1, 4, 5, and 6) and θ > θn (1, 2,
3, and 4). In these angular regions the interference limits
were calculated using (10) and (12).

With the exclusion of a small angular range to the right
of θC, the oscillations appearing in the quantum cross-
section are well within the classical interference region.
The interference limits cannot, however, be considered the
upper and lower envelopes of the quantum σ(θ). The rea-
son for this is clarified in panels (c) and (d), where the
N and F components of the quantum and classical cross-
sections, respectively, are shown.

Only the branches 1 and 4 contribute to the F classical
cross-section in the whole angular range. To the classical
N cross-section the branches 5 and 6 contribute for θ < θC,
while 2 and 3 contribute for θ > θn. The reduced number
of the branches contributing separately to the classical N
and F cross-sections considerably reduces the width of the
corresponding interference regions, with respect to that of
the full cross-section. Only in the region θC < θ < θn the
F interference region obviously coincides with the full one.

Thanks to the use of the NF decomposition we can
observe that the F interference limits result almost per-
fect envelopes of the quantum F cross-section. The period
of the oscillations of this cross-section decreases with the
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Fig. 5. Unfolded quantum (thick solid line) and classical
(thick dashed line) cross-sections, and classical interference
limits (thin lines), plotted versus the deflection angle.

increase of θ, which corresponds to a decrease of the de-
flection angle. This is confirmed by the very long period of
the oscillation appearing in the backward-angles N cross-
section. Owing to this, the oscillations can be interpreted
as arising from interference between classical-like contri-
butions whose phase differences tend to decrease while
approaching the nuclear-rainbow angular momentum. In
the present case, these phase differences are too small to
allow us to observe the maximal constructive and destruc-
tive interference amongst all the four branches of the Θ(λ)
contributing for θ > θn.

In the classical N cross-section a dark region is present
between θC and θn. From both the shadow boundaries,
this dark region appears enlightened by the quantum N
cross-section, and the tails of the two shadows overlap
without producing relevant interference effects1.

The N and F cross-section interference patterns are
considerably simpler than the full cross-section one. The
complicate pattern of the full σ(θ) arises from the coher-
ent superposition of the simpler F and N subamplitudes.
It is the folding of the plane of fig. 3, represented in fig. 1,
which is responsible for this complicate pattern. The NF
decomposition allows one to attempt the unfolding of the
quantum cross-section, in analogy to the unfolding of the
classical cross-section shown in fig. 2, by considering its
dependence on the deflection angle rather than on the
scattering angle. In fig. 5 the thick solid curve shows the
unfolded quantum cross-section. In order to eliminate the
appearance of the classical glory singularities, in this fig-
ure, as in fig. 2, the cross-sections multiplied by | sinΘ| are
plotted. To construct the unfolded quantum cross-section

1 The interference effects observed in ref. [11] in panel (c)
of figs. 2 and 9, and in panels (c) and (d) of fig. 16 (and the
corresponding effects in figs. 3, 6, 12, 19, and 20) are artifacts
deriving from unphysical contributions present in the usual
Fuller’s NF decomposition [10], but absent in the improved
one [9] here used.
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the N cross-section values for θ � 30◦ were attributed to
Θ = θ, and those for θ � 30◦ to Θ = −360◦ + θ. The val-
ues of the F cross-section were attributed to Θ = −θ. The
same was obviously done for the classical cross-sections
and interference limits.

The unfolded quantum curve thus obtained shows an
irregular behavior in a small range around −180◦. This is
probably due to the fact that the singularities of the quan-
tum N and F cross-sections at 180◦ are slightly different
from the 1/ sin θ singularity predicted by the non-uniform
approximation of the Legendre functions. With the exclu-
sion of this small range, one can appreciate the attempt of
the N quantum curve (Θ < −180◦) to match continuously
the F one (−180◦ < Θ < 0◦) at Θ = −180◦.

The comparison of ΘQ(λ) with Θ(λ), and the behav-
ior of the F quantum cross-sections with respect to the
corresponding interference limits, allows one to recognize
the presence, in the quantum quantities, of contributions
which are very close to those expected from the asymptotic
classical-like limit. The increase of the oscillation period
of σ(Θ), with decreasing Θ, well justifies the fact that the
interference limits are rather far from representing the en-
velopes of the “folded” full quantum cross-section, plotted
as a function of θ.

3.2 Pure quantum-mechanical analysis

Results similar to those shown in subsect. 3.1 can be ob-
tained without using any classical-mechanics calculation,
by simply observing the changes produced in S(λ) and in
σ(θ) by changing the value attributed to �.

In fig. 6 the open dots show the values of ΘQ(λ) cal-
culated at integer λ values using eq. (16) and substitut-
ing � in an optical-potential code with �f = �/f , with
f = 0.5, 1.0, 1.5, and 2.0.

Because the spacing in b of points corresponding to one
unit increment of the angular-momentum quantum num-
ber l is proportional to 1/f , the abscissas of the points
corresponding to ∆l = 1, 2, 4 for the cases f = 0.5, 1.0, 2.0
are trivially the same at appropriate b values. The b value
corresponding to λ = 1 for f = 0.5 is the same as that
corresponding to λ = 2 for f = 1.0 and to λ = 4 for
f = 2.0, and so on. In fig. 6 the open dots corresponding
to these values of f result perfectly concentric at the com-
mon b values, with the exclusion of a small range around
b � 5.5. This provides a striking confirmation of the clas-
sical scale invariance properties of ΘQ(λ) for almost all
the values of the angular-momentum quantum number.
The thick solid curve, representing Θ(λ), shows that also
in the above small range, and in the more unfavorable
case (f = 0.5, � two times larger), the agreement between
ΘQ(λ) and Θ(λ) is rather good. This agreement becomes
practically perfect for the most favorable case (f = 2.0, �

two times smaller).
The tendency of all the ΘQ(λ) points (plotted against

b for different � values) to lie on the same curve is a clear
sign of the fact that the properties of S(λ) (with the true �

value) are very close to those predicted by the asymptotic
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Fig. 6. Quantum deflection functions (open dots) calculated
using the four � reduction factors given in the figure. The thin
curves interpolate the dots, the thick one shows the classical
deflection function.

classical-like limit (6). This can be tested using only quan-
tities calculated by a conventional optical-potential code,
without the necessity of calculating the classical deflection
function.

Panels (a), (b) and (c) of fig. 7 show, respectively, the
full, N and F cross-sections calculated with the above val-
ues of the reducing factor f . In these figures the thick
dashed and thin solid lines show the classical cross-sections
and their interference limits, respectively. These lines were
drawn only to recall the behavior of these quantities. As
for the deflection function, their knowledge is not neces-
sary to recognize the presence of classical-like contribu-
tions.

In the insets, showing a reduction of each panel, the
true cross-sections are plotted together with eleven cross-
sections calculated with values of f ranging from 3.0 to
4.0 with a step of 0.1.

By looking at fig. 7 (a) one observes a rather compli-
cate behavior of the full cross-sections corresponding to
the four values of f from 0.5 to 2.0. This makes it difficult
to imagine that the oscillations tend to be confined within
a well-defined region. This tendency begins to appear in
the inset, where a rather well-defined upper envelope can
be observed, and also indications of a lower envelope are
present. The minor definiteness of the lower envelope is
explained by the fact that, with the scale used, the min-
ima are much narrow than the maxima. Using a fixed grid
to tabulate the cross-sections it is more probable to miss
a minimum rather than a maximum.

For θC < θ < θn, the full cross-sections calculated
with the four values of f are in disagreement with the
interference limits, particularly in the region to the right of
θC. The disagreement decreases rapidly with increasing f .

The reason of this behavior is understood by consider-
ing fig. 7 (b), where the N cross-sections are plotted. In the
classical shadow region, by increasing f , the cross-sections
decrease very rapidly moving to the right of θC, while they
decrease slowly moving to the left of θn. In the inset one
can observe that even for f values ranging from 3.0 to 4.0
the decrease of the N cross-section is slow, moving from
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Fig. 7. Full (a), N (b) and F (c) quantum cross-sections,
for the four � reduction factors given in panel (a), together
with the classical cross-section (thick dashed) and interference
limits (thin solid). The quantum cross-sections and the classi-
cal quantities are plotted in the insets together with quantum
cross-sections calculated with � reduction factors from 3 to 4.

the right towards the classical shadow region. The eleven
cross-sections only begin to fill gradually the interference
region. The phase difference between the subamplitudes,
contributing to this part of the N cross-section, depend
weakly on the angle and only a few oscillations appear in
the cross-section at the maximum value of f considered.

In the asymptotic estimate of the scattering amplitude
using the uniform method around a rainbow angle, the ra-
pidity of the decrease of the cross-section, in the classical
shadow region, depends on the second derivative of the de-
flection function at the rainbow angular momentum. The
curvature of the deflection function is much higher at the
nuclear than at the Coulomb rainbow, and this explains
why the two slopes are so different.

The full and the N cross-sections do not clearly exhibit
properties which are invariant with respect to the value
attributed to �. This is not the case for the F cross-sections
shown fig. 7 (c). The existence of common upper and lower
envelopes for these cross-sections is rather well indicated
already by the f values ranging from 0.5 to 2.0, and is
clearly proved by the f values from 3.0 to 4.0 given in the
inset of the figure. Apart from a very small distortion of at
least one of the two interfering subamplitudes this figure
provides a strong indication of the dominance of classical-
like contributions already from the value f = 0.5 (� two
times larger).

4 Complex optical-potential cross-section:
Elab = 132 MeV

The first complex optical potential considered is one of
the potentials whose cross-section fits the experimental
data at Elab = 132 MeV [4]. The imaginary part of the
potential has a conventional Woods-Saxon form factor
with parameters W0 = 13.86 MeV, Rw = 5.6894 fm, and
dw = 0.656 fm. The parameters of the real part are those
of the real optical potential previously considered.

This case was chosen because a recent semiclassical
analysis [14], using the Brink and Takigawa [15] approxi-
mation, has shown that the oscillations appearing in the
F cross-section can be explained as arising from the in-
terference between the F contributions from the first two
terms, named in the following barrier and internal, of the
multireflection expansion of the semiclassical scattering
amplitude. A similar result has also been obtained [16,17]
(with an approximate calculation [18] of the barrier and
internal amplitudes) for the same and for several other
optical potentials used to describe the elastic scattering
of light heavy-ions.

Because the F contribution to the barrier term is re-
sponsible for the appearance of the Fraunhofer-like pat-
tern in the barrier cross-section, one is naturally induced
to think that this contribution should be considered of
diffractive nature, i.e. of quantum origin. It seems there-
fore interesting to check this interpretation with the sim-
ple recipe here proposed. By decreasing the value of �,
one should also observe how this contribution changes,
becoming a classical-like one.
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Fig. 8. The thick curves show the classical deflection func-
tion (b) and the square root of the survival probability (a).
The open dots represent the values of the quantum deflection
function and of the modulus of the scattering function. The
thin lines interpolate the dots.

4.1 Comparison with classical quantities

According to the above classical interpretation of the
imaginary part of the potential, the presence of this term
introduces a probability P (λ) of survival in the elastic
channel, but does not modify the classical deflection func-
tion Θ(λ). Owing to this, the same labels of fig. 1 can
be used to identify the contributions from the different
branches of Θ(λ).

In panels (a) and (b) of fig. 8 the thick lines show, re-
spectively, the square root of P (λ) and Θ(λ) as functions
of the impact parameter b. In the same figure the dots
represent the values of |S(λ)| and of ΘQ(λ) and the thin
lines are cubic spline interpolations of the dots. The fig-
ure shows that the quantum and classical corresponding
quantities are in good agreement, apart from a neighbor-
hood around b � 5.5 fm of half-width of about 1 fm. The
impact parameter value bn of the nuclear rainbow is in
this region, and its position is very close to the position of
the deep minimum of P (λ). The behavior of |S(λ)| in this
region is considerably different from that of the square
root of P (λ). This suggests the dominance of a scatter-
ing mechanism different from a classical-like one for the
angular momenta corresponding to this range of impact
parameters.
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Fig. 9. The same as fig. 4 for the complex optical potential
at Elab = 132 MeV.

In the different panels of fig. 9 the same quantities
given in the corresponding panels of fig. 4 (real potential)
are shown for the complex potential. At angles larger than
θC the contributions from all the branches of the deflec-
tion function are strongly reduced by the absorption. Each
point of the old curves is lowered by the corresponding
value of P (λ). Furthermore, the deep minimum of P (λ),
around bn, produces a dramatic reduction of the contribu-
tion from the N trajectories with b � bn. Only part of the
N contributions from the branches 2 and 3 of Θ(λ) can be
observed within the range of the vertical axis of fig. 9. At
backward angles these curves are close to the dashed lines
representing the F contributions from the branches 1 and
4 of Θ(λ), but they drop very rapidly with decreasing an-
gle going out from the plotted area. The very small values
of these contributions at angles just above θn prevent the
observation of effects in the classical cross-section deriving
from the nuclear-rainbow singularity.

The rapid decrease of these contributions, together
with the modifications of the slopes of the contributions
from the F trajectories, considerably shrinks the width
of the interference region. The borders of this region are
shown by the thin lines in panel (b) of fig. 9. In the same
panel, the thick curve shows the quantum cross-section.
This curve, in the forward hemisphere, substantially vio-
lates the boundaries fixed by the interference limits.

Panel (c) shows that the violation of the interference
limits is mainly due to a violation of the corresponding
limits by the N component of the full cross-section. At an-
gles to the right of θC the quantum curve decreases almost
exponentially, at the rate of about one order of magnitude
per 10◦, filling the classical shadow region and crossing the
backward interference region at about 90◦. In the back-
ward hemisphere, decreasing θ below 180◦, the quantum
N curve closely follows the classical cross-section of the
branch 2 of the deflection function. This behavior is qual-
itatively similar to that observed in the N cross-section of
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Fig. 10. The open dots show the moduli of the scattering
functions (a) and the quantum deflection functions (b) calcu-
lated using the four � reduction factors given in the figure.
The thick curves show the corresponding classical quantities
and the thin curves interpolate the dots.

the real potential. The only difference is represented by
the fact that now the curves at the right of θn are down-
ward shifted and decrease more rapidly by decreasing the
angle. This allows one to observe in a wider angular range
the almost exponential decrease to the right of θC.

The behavior of the quantum F cross-sections
(panel (d)) show that a relevant contribution to the vi-
olation of the classical interference limits comes also from
at least one of the subamplitudes responsible for the os-
cillations of this cross-section. This supports the results
obtained with the semiclassical analysis [14], suggesting
that one of these subamplitudes cannot be considered a
classical-like one.

4.2 Pure quantum analysis

Panels (a) and (b) of fig. 10 show, respectively, |S(λ)| and
ΘQ(λ) calculated with the four values of f from 0.5 to
2.0, and correspondingly scaling the imaginary part of the
potential. By increasing f all the points tend to lie on
the same curve in increasing ranges of b. Comparing the
behavior of the points representing ΘQ(λ) with the corre-
sponding ones for the real potential one observes that the
imaginary part of the potential delays the approach of the
classical-like limit. The addition of an imaginary part in-
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Fig. 11. The same as fig. 7 for the complex optical potential
at Elab = 132 MeV.

creases the non-homogeneity of the medium in which the
particles propagate and favors the survival of wave effects.

It is interesting to observe that, for f = 0.5 and b
larger then about 4 fm, ΘQ(λ) has characteristics typical
of a repulsive interaction. These are similar to those of
the deflection function of the barrier term of the Brink
and Takigawa approximation, which accounts for the con-
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tribution from the reflection phenomenon of the incoming
waves in the region of rapid variation of the interaction.

The variations with f of the full, N and F cross-sections
are shown in panels (a), (b) and (c) of fig. 11, respectively.
In these figures the full and F cross-section curves corre-
sponding to values of f from 0.5 to 2.0 are rather far from
having common envelopes. In the backward hemisphere
the N cross-section depends very few on � for f ≥ 1, while
the common envelopes begin to appear in the full and
F cross-sections with f = 1.5 and 2.0. The existence of a
well-defined interference region is clearly shown by the cal-
culations with values of f from 3.0 to 4.0, given in insets.

Thanks to the rapid decrease of the N cross-section,
by decreasing the angle below 180◦, the boundaries of the
interference region are far better defined for the complex
potential full cross-section than for the real potential one.
The addition of the imaginary part to the optical potential
has strongly increased the slope of the backward N cross-
section and has considerably reduced, or perhaps elimi-
nated, the long period oscillations appearing in the inset
of fig. 7 (b). Both these facts contribute to a better defi-
nition of the interference region for the full cross-section.

The interference region, obtained using a pure quan-
tum calculation, is just the one previously calculated using
the classical mechanics. This confirms that the analysis
of the nature of the different contributions to the cross-
section can be done in absence of any classical-mechanics
calculation.

The presence of at least one classical-like contribu-
tion in the F cross-section is proved by the behavior of
this cross-section at backward angles, and by its contin-
uation, passing through the glory singularity, in the N
cross-section at backward angle. The violation, at for-
ward angles, of the interference limits suggests that the
other subamplitude, responsible for the oscillations of the
F cross-section, cannot be considered a classical-like one.

5 Complex optical-potential cross-section:
Elab = 200 MeV

The second complex optical potential considered is one
of the potentials whose cross-section fits the experimen-
tal data at Elab = 200 MeV [4]. This potential also has
conventional Woods-Saxon form factors with parameters
V0 = 216.3 MeV, Rv = 3.2847 fm, dv = 0.927 fm, for the
real part, and W0 = 17.83 MeV, Rw = 5.8625 fm, and
dw = 0.541 fm for the imaginary part.

This case was considered because an analysis similar
to that of ref. [14] shows that the semiclassical Brink and
Takigawa method fails to reproduce quantitatively the op-
tical cross-section in the whole angular range [11]. Owing
to this, the semiclassical method cannot be used to try to
attribute a physical meaning to the different terms con-
tributing to the cross-section. The hope is that the present
recipe provides useful indications on the nature of the sub-
amplitudes contributing to the cross-section of this poten-
tial.
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Fig. 12. The same as fig. 8 for the complex optical potential
at Elab = 200 MeV.
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Fig. 13. The same as fig. 4 for the complex optical potential
at Elab = 200 MeV.

5.1 Comparison with classical quantities

In fig. 12 the classical Θ(λ) and the square root of P (λ) are
shown together with the corresponding quantum quanti-
ties. With respect to the 132 MeV case, the minimum of
the deflection function corresponding to the nuclear rain-
bow has moved to a deflection angle Θn � −125◦. Because
the nuclear-rainbow singularity slits [19] toward a deflec-
tion angle larger than −180◦, the backward glory singular-
ities are suppressed, and only four branches of the deflec-
tion function contribute to the cross-section. The panels
of fig. 13 show that, in this case, the regions to the right
of the Coulomb rainbow θC (for the N cross-section) and
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Fig. 14. The same as fig. 10 for the complex optical potential
at Elab = 200 MeV.

to the right of the nuclear rainbow θn (for the F and the
full cross-sections) are classical shadow regions.

The quantities ΘQ(λ) and |S(λ)| are in substantial
agreement with the corresponding classical ones in b
ranges wider than for the 132 MeV case. However, the vi-
olations of the interference limits of the quantum full and
F cross-sections, shown in panels (b) and (d) of fig. 13,
are not smaller than in the lower energy case. For an-
gles smaller than about 60◦ the F quantum cross-section
is largely outside of the classical interference region. This
suggests that also for this potential, as for the 132 MeV
case, these oscillations cannot be interpreted as arising
from the interference between two classical-like contribu-
tions.

5.2 Pure quantum analysis

For the 200 MeV potential, figs. 14 and 15 correspond to
figs. 10 and 11, for the 132 MeV case. By comparing fig. 14
with fig. 10 one observes that, by decreasing �, the prop-
erties of S(λ) approach the classical-like limit faster in the
higher-energy case. This is true also for the properties of
the cross-sections, and depends on the fact that for higher
energy the wavelength is smaller. In particular, by looking
at fig. 15 (a) and (c) one observes that the quantum curves
begin to have as upper and lower envelopes the interfer-
ence limits, for scattering angles around 60◦, already with
a � reducing factor of 1.5. From this value upward the
interference pattern, below the classical nuclear-rainbow
angle, can be considered as arising from interference be-
tween classical-like contributions.

In the insets of fig. 15 (a) and (c) one again observes
that the quantum calculations, with f values ranging from
3.0 to 4.0, very well define the classical interference region,
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Fig. 15. The same as fig. 7 for the complex optical potential
at Elab = 200 MeV.

apart from the standard problems connected with the
quantum behavior around the classical nuclear-rainbow
angle. Also in this case, the good definition of the inter-
ference region allows one the test the classical-like origin of
the different subamplitudes contributing to the quantum
cross-section by using only the calculations of a standard
optical-potential code.
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In the forward hemisphere, the values of the true F
cross-section largely violates the interference limits. Fig-
ure 15 (b) shows that, as in the previous case, the behav-
ior of the N cross-section in the classical shadow region
is largely responsible for the violation of the interference
limits of the full cross-section. In the inset of the same
figure one can observe that, for f values from 3.0 to 4.0
and for θ > θC, only the rapidly decreasing exponential
contribution appears in a very restricted angular range
above θC.

6 Conclusions

The simple recipe of shrinking �, in a conventional optical-
potential calculation, provides useful information on the
nature of the different subamplitudes contributing to the
cross-section.

By decreasing � the different characteristics of the
cross-section smoothly change, with different rapidity. In
the major part of the angular interval, below some � value,
no further changes are observed in the cross-sections with
decreasing �, apart from the sliding of the interference pat-
tern within well-defined regions, with an increasing num-
ber of oscillations. These are the characteristics connected
with the realization of the transition from the dynamical
regime governed by quantum mechanics to that well ap-
proximated by its asymptotic classical-like limit.

The recipe can be easily implemented in any optical-
potential code, providing a practical tool for a rapid check
of the classical-like properties of the cross-section of a
given potential.

The possibility of producing optical-potential cross-
sections, attributing different values to �, can also be used
as a laboratory, providing useful cross-sections for testing
the effectiveness of the semiclassical techniques currently
used for investigating the subtle transition between the
quantum and the classical-like regimes.
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